

Daily Tutorial Sheet 2 JEE Main (Archive)

16.(A) When bauxite ore is digested with connected NaOH solution, alumina (Al₂O₃) dissolves.

$$\begin{array}{c} \text{Al}_2\text{O}_3(s) + 2\text{NaOH(ag)} + 3\text{H}_2\text{O}(\ell) \xrightarrow{473 - 523\,\text{K}} \\ \text{Sodium meta-aluminate} \\ \text{(X)} \end{array} \\ \begin{array}{c} \text{CO}_2 \\ \text{Hydrated alumina} \\ \text{(Y)} \end{array} \\ \begin{array}{c} \text{CO}_2 \\ \text{Hydrated alumina} \\ \text{(Y)} \end{array}$$

17.(B) In the extraction of copper from its sulphide ore, the metal is obtained by auto-reduction. A part of sulphide ore is converted into oxide which then reacts with remaining sulphide to give the metal.

$$2Cu_2S + 3O_2 \longrightarrow 2Cu_2O + 2SO_2$$

$$2Cu_2O+Cu_2S \longrightarrow 6Cu+SO_2$$

18.(B) $2Cu_2S + 3O_2 \xrightarrow{\Delta} 2Cu_2O + 2SO_2$ This reaction is roasting of Cu_2S .

- 19.(C) Copper pyrite: CuFeS2
- 20.(B) The metal whose curve lie below can reduce the metal oxide whose curve lie above in Ellingham diagram.
- 21.(C) Siderite is FeCO₃, Kaolinite is Al₂Si₂O₅(OH)₄ Calamine is ZnCO₃, Malachite is CuCO₃·Cu(OH)₂
- 22.(B) Refer NCERT

23.(D) Cryolite =
$$Na_3[AlF_6]$$

- **24.(A)** Ellingham diagram tells us about ΔG values (feasibility) of thermal reduction of an ore using suitable reducing agents.
- **25.(C)** Fact
- **27.(A)** Aniline is a froth stabilizer.
- **28.(A)** Bauxide \rightarrow Al₂O₃, Malachite \rightarrow CuCO₃ · Cu(OH)₂ Siderite \rightarrow FeCO₃, Calamine \rightarrow ZnCO₃
- **29.(A)** Assertion is correct as Haematite ore is used for extraction of Fe. Haematite is an oxide ore, so reason is incorrect.

30.(C) Ni(s) + 4CO(g)
$$\xrightarrow{50^{\circ}\text{C}}$$
 [Ni(CO)₄]
$$\text{[Ni(CO)_4]} \xrightarrow{200^{\circ}-250^{\circ}\text{C}}$$
 Ni(s) + 4CO(g

- 31.(B) Theory based
- **33.(C)** In the given diagram, the plot for $A + O_2 \rightarrow AO_2$ is below the plot for $B + O_2 \rightarrow BO_2$ when T > 1400°C, which shows that A can spontaneously reduce BO_2 .
- **34.(B)** Fact